

Working Group 1 Report

J. Scott Berg
Brookhaven National Laboratory
11 July 2003
FFAG03, KEK

Proton Driver

- Shinji Machida presented a lattice design for a proton driver FFAG
 - **♦** *k* = 100
 - ◆ Magnetic field of 2.4 T; too high for H[−]
- Alessandro Ruggiero talked about an FFAG as replacing a SCL

Muon FFAG Lattices

- Carol now says FDF looks better than DFD (still want to hear about scaling)
- Explained why Dejan's lattices looked better than "baseline" lattices
 - Higher pole tip fields
 - Shorter drifts between quads
 - ◆ Larger RF gradient needed to get sufficient longitudinal acceptance
 - Use optimization procedure to make lattice with corresponding parameters from Dejan's lattice: even lower time-of-flight than Dejan.
- Dejan also showed low-energy lattice
- Both Carol and Dejan continued to look at 10–20 GeV lattices

Muon FFAG Lattices (cont.)

- Bob Palmer implemented the FFAGs in ICOOL
 - ◆ At higher amplitude, time-of-flight dependence gets distorted (becomes asymmetric)
 - Motion looks good at high amplitude
 - Soft edges difficult: with only 16 cm gap in Dejan's lattice, fields overlap
 - Sextupoles didn't cause beam loss, but caused significant distortions
 - ★ Didn't have much effect on time-of-flight range
 - ★ Probably can't increase without beam loss
- François Méot performed nonlinear tracking in a non-scaling lattice with edge fields
 - \bullet For high amplitude motion in y, particles do not remain near closed otbit in x
 - ◆ Motion stable (but "fuzzy" at 30 mm normalized amplitude
 - Fringe fields gives only weak effect

Muon FFAG Lattices (cont.)

- Aiba talked on longitudinal dynamics
 - ◆ Both minimum and maximum energy must be inside bucket
 - **★** Bunch makes half synchrotron oscillation inside bucket
 - For SC magnet cases, bucket height not enough in low eneergy stages
 - ◆ Unusual dynamics in low energy stages since transition energy inside energy range
 - **★** Dynamics more look in non-scaling FFAG
 - ★ Adjust "synchronous phase" to get different behavior
 - ◆ Tried lowering the RF frequency (to 7 MHz); helps

Talks Today

- Yoshimoto: FDF vs. DFD in scaling lattices
- Aiba and Garren: semi-scaling lattice